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"That whenever any style of ornament commands universal admiration, it
will always be found to be in accordance with the laws which regulate the
distribution of form in nature.”

- Owen Jones, “"The Grammar of Ornament", 1856

"I often wondered at my own mania of making periodic drawings. Once I

{ b

asked a friend of mine, a psychologist, about the reason of my being so
fascinated by them, but his answer: that I must be driven by a primitive,
prototypical 1imnstinct, does not explain anything.”

- M. C. Escher, Preface to "Fantasy and Symmetry"”, 1965
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N |
' n INTRODUCTION |
g 5 R |
gu Few applications in the mathematical field of group theory are as

gj readily understandable as the useful beauty of plane symmetry groups. Plane
) .

:: symmetry groups are a classification system for describing the symmetry of

;. two-dimensional figures and patterns. Here mathematics truly comes alive, as
;' abstract symbols used to describe symmetry can be immediately visualized as

; the rotation of a snowflake, the pattern on a vase, or the ceramic tile of an
%, ornate kitchen floor. The goal of this paper: to introduce the basic theory
% behind plane symmetry groups, and to present some simple algorithms one may

. use to analyze complex designs.

‘3 To make the theory accessible to as broad an audience as possible, the
? mathematics has been deliberately downplayed. Simple proofs that would be of
;; . interest to the undergraduate math major can be found in the appendix. More
§| Gj' difficult or tedious proofs are relegated to the bibliography. Since mosaics
%; and patterns are visual creations, examples and illustrations are used

~$ frequently in the text. The prerequisites to understanding the contents of

. this report are modest. The authors assume that the reader is comfortable

i with the basic notation and theory for sets, functions, and the composition
ﬂ of functions.

5 As we progress, several fascinating topics will branch off from our main
? . theme. As alluring, beautiful, and important as these topics may be, we will
: not take the time to investigate them here. Rather, such topics will be

" referred to the bibliography, affording the ambitious reader the opportunity
f to progress further on his own.
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This paper is the joint effort of Major David Jensen and Cadet Firstclass A

<y

{ Gary Harvey. It represents partial fulfillment of Math 499 (Independent
: Study) course requirements for Cadet Harvey, a senior math major at the Air
Force Academy. The material for this technical report comes largely from a

two-hour talk Major Jensen developed to introduce plane symmetry groups using

the brilliant work of the Dutch artist, M. C. Escher.
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BASIC THEORY
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A binary operatiopn is a function that takes two elzments in a nonempty

P

' set G and assigns to them a unique elemenf also in the set G. Using standard
:'.

:¥' function notation, if % is a binary operation on G we write « : G x G + G.

{. [ ]

ah' Familiar examples of binary operations abound, with one of the easiest being
N

the real numbers under normal addition ( + : R x R + R).

~,

With this notion of a binary operation we can define a group—~—one of the

. e
-

k)

! : most important algebraic structures in the world of mathematics.
iy
°
2‘% Definition 1.1  Group (G,)
EQ? A group (G,x) is any nonempty set G together with a binary operation
B e # ¢ G x G + G that satisfies the following three properties:
lo

Associative Property: a x (b %# ¢c) = (a % b) x ¢, for all a, b, and ¢ £ G.

Identity Property: There exists e € G such that a x e = e x a = a,

for all a € G. We call e the identity element

VieFwEE s N

of thc group-

I

P

Inverse Property: For every a € G, there exists b € G, such that

-
-’

axb=Dbxa=e.

A We call b the inverce of a2 and write b = 8-1

o We say (H,x) is a subgroup of a given group (G,%) when H is a nonempty
® subset of G, and (H,*) is itself a group. Also, a group (G,x) is called
Abelian if all its elements commute, that 1s a # b = b » a for all a and b

f:: in G.
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The definition of a group is ilmportant because the properties listed
above give 1t enough structure to be useful, while at the same time the
definition is not too restrictive. There are lots of groups. The real
numbers under normal addition (R,+) form a group with identity e = 0 and
inverses of the form a-1 = -a., Rather than R, we could have just as easily
chosen the rational numbers Q or the integers I and formed the groups {Q,+)
and (I,+). For another example, the real numbers (excluding zero) under normal
multiplication, (R - {0}, °), form a group with identity e = 1 and inverses
given by al = 1/a.

It 18 also easy to define groups of matrices or groups of functions under
various binary operations. In particular, consider RZ’ the set of all points
in the plane, and let G be the set of ail one—to-one functions from R2 onto RZ’
Then consider (G,°) where ¢ represents composition of functions. First note
that all one-to-one, onto functions from R2 to R2 are invertible. Therefore, AR
elements in G have inverses. Moreover, ¢ is a binary operation on G since the
composition of two invertible functions is again an invertible function. The
other two properties needed to establish that (G,e) is a group follow readily
from the fact that all invertible functions from R, to R, are assoclative
under composition, and the identity function i : R2 + R2 defined by i(p) = p
for all p ¢ R2 is the logical choice for the group identity element.

When investigating the symmetry properties of plane figurcs and patterns,
the group (G,°) is too large to be very useful. Our first real progress in
applying group theory to questions of symmetry comes when we consider a special
subset H of G. We let H be precisely the invertible maps from R, to R, that also

preserve distance between points. Using the usual notation of vertical lines
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for distance, we have H = {a € G : |p - q| = |a(p) - a(q)| for all p, q ¢ RZ}’
where |p - q| is the straight line distance from point p to point q and

| «(p) = alq)]| is the straight line distance rom point a(p) to point a(q).

It is easy to show that H is a subgroup of G (see appendix A), and we call

the elements of H the motions, or isometries, of the plane. Moreover, it can
be shown that there are only four types of motions possible [l]:

1. Translation A mapping a that sends all points in R2 the same dis-

tance d in the same direction 8. To illustrate, con-

sider p;, q; € R, with a(pi) =q, 1=1,2, 3:

Figure l.1

2. Rotation A mapping a obtained by rotating the plane clockwise a
fixed amount ¢ about a fixed point p. To illustrate,

consider p;, q, € R, with a(pl) = q;:

f: 0-,... "‘.".. %l

Figure 1.2
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ﬁ\ 3. Mirror A mapping o obtained by reflecting the plane through a *@
Ll
-( fixed line L (that is, a mapping that sends each point p
PR
N

s to a point q such that L is the perpendicular bisector
J of the straight line between p and q). To illustrate

consider Py 9y € R2 with a (pi) = qy i=1, 2, 3, 4:

‘I..ﬂ 7’
1\ e
\':':' Pt

™ . ;

-t
wesfewic o
[ Y

e se 0 ae

o, ‘3,

B Figure 1.3

a 4, Glide A mapping o composed of a tramslation In the direction Lﬂ
}&? of a fixed line L, followed by a mirror through L. To

W : illustrate let Pys 94 € R, with a (pi) = q,, 1i=1, 2:

2

e safemeitrssnes

v Y
“ .
ot zl

® Figure 1.4

T, Having defined the subgroup (H,°) ¢f (G,°) we are nearing our goal of being
i
::, able to use group theory to analyze the symmetry of figures and designs in the

G plane. The problem is that (H,°), as a set, is still too large. The next Q‘

Wy —6-

f¢\ '.ﬁ ‘ }1‘. -}** ﬂ " , [ )..:. -'n‘l'-:{l. ﬁ\‘\ * “::\ \:&. \ ‘ k:

n'l " u“‘c. PN SR " 4

l'|. ‘;

Oudb LAl ()



e

™
L~

B

) o definition overcomes this problem by restricting (H,e) in a very natural way,

(8’

v
{ leaving us with precisely the motions we need to describe the symmetry of a
;{ given figure.

>,

? Definition 1.2 Symmetry Group of T

. Let T be any nonempty set of points in the plane, T C R,s Define a sub-
i« set HT of H by HT = {a el : «T) = T}. Here a(T) = T denotes set invariance,
4
}y that is a(p) € T for every p € T. It can be shown (see appendix B) that

3; . Hy is itself a subgroup of G. We call Hy the symmetry group of T.

0
:5 The way to view this definition of HT is as follows:
.. - Start with a given figure in the plane. For a simple example, take a circle
3
B of radius r centered at the origin of the Cartesian coordinate system.

» .

; - Consider the points that make-up the figure to be T. Therefore, for our
.l

)
!“ é;; example, the set T is the locus of points satisfying x2 + y2 = rz.
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o
;{c = Then I-Lr is exactly those translations, rotations, mirrors and glide, that map i
A0 T back onto itself. When T is the circle shown in Figure 1.5 (in fact, when T
::E:?.; is any bounded figure) we will see in Chapter 2 that translations and glides
A\
Wi
_'1 cannot be elements of HT' If we consider rotations, there are obviously an
L)
'-;l'- infinite number of possibilities, since any rotation about the origin will
f_‘q leave T invariant. 1In addition, any mirror through a line passing through
g
J&:: the origin will also map T onto itself.
L]
Example 2.1 Find the symmetry group of T where T contains only two distinct
ehl
Hhe
'_;f.j points, say T = {pl,pz}. Note first that the identity map 1 is in Hpe For if
\.*I
'\';.‘) i(p) = p for every p in the plane, then certainly i(T) = T. To determine the
1500
other motions in H‘I” let L be the straight line through points p, and p,,
‘ and let L2 be the perpendicular bisector of the line segment from P; to pye.
4 '
: L
.\:‘ : g
Sk : 4
4 : ‘
"\ ;
:::s L . . ..?.... . oee .e® . .
'Zk v ) fo 2Fo /°,
bn s
:) Figure 1.6
wh
K
::’.:;:: Using the definitions of a translation and a glide, it is easy to see that as
0"'
'|‘Ht‘ in the case of the circle, translations and glides cannot be elements of .
hidd -
’ The only rotation in HT is the rotation of 180° about the point Po* (We don't
)
)."'Q
::a:" ccunt the case where we pick a point, say Py and rotate everything 360° about
o
e that point. After all this just yields the identity map, which we have already
~:, acknowledged as being in HT.) The only two mirrors possible are reflections
o
," through the lines L1 and L2. Therefore, HT contains exactly four elements: the
D
:j identity map, 180° rotation about Pg» reflection through Ll’ and reflection
Y through L,. .
% :
W —8-
_‘.J 8
R
. “
0
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Example 2.2 Find the symmetry group of T where T is the set of points that

make-up the footsteps depicted below [2]:

RN
«® | P P
o

i @ i @

¢ ' T 1

Figure 1.7

The footprints are assumed to continue infinitely to the right and to the left.
There are no rotations or mirrors in HT. However, this is the first example we
have encountered where translations play a part. A translation of length t (or
any integer multiple of t) in the direction of L will map T onto itself. There
is also a glide in this case consisting of a t/2 translation (or any integer
multiple of t/2) in the direction of L followed by a reflecgion through L. Note
that because different integer multiples of the period t (t/Z) give rise to
different translations (glides), HT has an infinite number of elements. A
symmetry group that has an infinite number of elements is called an infinite
symmetry group. Likewise, a finite symmetry group is one with only a finite
number of elements.

A major goal of this paper was to introduce the basic theory behind plane
symmetry groups. In this chapter we have accomplished that by developing the
foundational idea of the symmetry group of a set T. In the next three chapters

we will see how to use this idea to classify the symmetry of different figures

and designs in the plane., Specifically, we will accomplish the following:

\. ". h,\"r
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Chapter 2: Classify symmetry groups for plane bounded figures. ;s
Chapter 3: Classify infinite symmetry groups for patterns that repeat them-
selves regularly in one dimension. (Frieze Groups)

Chapter 4: Classify infinite symmetry groups for patterns that repeat them-

selves regularly in two dimensfons. (Wallpaper Groups)
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Chapter 2

SYMMETRY GROUPS FOR PLANE BOUNDED FIGURES

A bounded figure in the plane is one which can be encompassed by a circle
of finite radius. In this chapter we claésify the types of symmetry groups,
that is the sets of motions HT, that are posgsible for plane bounded figures.

The task 1s easier than it might first appear. Translations (and glides) cannot
be motions in the symmetry group of a set T which represents a bounded figure.

A simple proof of this fact can be found in Appendix C. Therefore, in dealing
with plane bounded figures, we need only consider rotations and mirrors.

Consider the symmetry group of an equilateral triangle:

T o —-o-o.o-.-:"..ooon see e e s0e e sse o

Figure 2.1
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o
A ’ A ad
B,
a‘::c'

t)
xk H, = {al,az,a3,aa,a5,a6} where
oy o)
¢."l ("'
{ a, = identity map
;c:(; 1
ffﬂ o = rotation 120° clockwise around p

b

'

:$5~ ay = rotation 240° clockwise arnund p

s .

3y

N a, = reflection through L
?ﬁ» 4 1

r.: = reflection through L
::..:' % 2

bt a, = reflection through L

e ® 3
.. We call this symmetry group a dihedral group and write HT - D3. The order of a

0

Qﬁ group 1is simply the number of elements in the group. Therefore, the order of
L) .’0 :
. 1
32 D3 is 6. A part of D3 that we are especially interested in is the subgroup i
an.\ i
; c3 = {al,az,a3}. Note that C3 can be generated by repeated compositions of the ‘
" :

“l

.zﬂ single rotation a,:
ol

\:::l c-{aaa}.{ a. o© ° °a}'{ a2 3}
e 3 2%3°% %0 % %% %% %R %R %0%20% a
&h A group which is generated by a single element in the group is called a cyclic =
0

e

%2 group. Therefore c3 is a cyclic subgroup of order 3.

]

]

4,
2 From the development of D3, the symmetry group of an equilateral triangle,
:?i it is easy to envision a similar development for the symmetry group of a square.

4’.

r\ We would obtain a dihedral group D4 with eight elements, (4 reflections and 4

W

L rotations). Once again, the rotations would form a cyclic subgroup, in this case

;:r Ca. More generally the symmetry group of any regular n-sided polygon is Dn
3
;tn (with subgroup C_ ) where [2]:
>

@

s Cn is a cyclic group of order n, consisting of clockwise rotations through
)

L]

%3 k ngg—), 0 {k <n, around a fixed point p.

)
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Dn is a dihedral group of order 2n and consists of Cn together with reflec-
tions through n axes that intersect at p and divide the plane into 2n equal

angular regions.

With these definitions of Cn and Dn we can now classify all possible
finite symmetry groups for plane bounded figures. Specifically, we have the

following powerful result:

Theorem 2.1 A finite symmetry group of a plane bounded figure must be either

a cyclic group C, or a dihedral group D,

An especially well-written proof of Theorem 2.1 is provided by Durbin [2].
We will not discuss the proof here except to note that the word "finite" is
important. The circle we discussed in Chapter 1 is certainly a plane bounded
figure, but it cannot be classified as either Cn or Dn for finite n. As we saw
earlier, the symmetry group of a circle contains an infinite number of rotations
and reflections. The symmétty groups for circular figures are a special case
and are called continuous symmetry groups. They are often denoted C_. Except
for circular figures, all plane bounded figures have finite symmetry groups and

Theorem 2.1 applies.

While C and D, (and C_, for circular figures) classify the symmetry for
bounded figures, we still need to address the more difficult unbounded case.
That's the next challenge to be taken up in Chapters 3 and 4 where we will look
at patterns (figures that repeat themselves at regular intervals in the plane).
Before moving on however, let's consider some especially beautiful examples of

plane bounded figures. The cardioids and roses that follow were derived from
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Dr. Peter M. Mauer's recent work in computer graphics [7]. A special thanks to i&

Lt Colonels Willfiam J. Riley and Robert L. James, Offfce of the Dean of

fay the Faculty, U. S. Air Force Academy, Colorado, for programming Dr. Mauer's

algorithm and actually generating the i{llustrations.

;’,.: Figure 2.2
a3 "Spiral of Archimedes"
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X Figure 2.4

Symmetry: D, (Klein 4-Group)

ik

Labeling Figure 2.4 as D2 is an example of the liberty one might take in
A classifying the symmetry of a given design (note that a reflection a through a
vertical line through the center of 2.4 does not quite yield invariance ofT) =
T, since the two sides do not perfectly align). In fact, with every picture of
$§ a planar figure one should remember that perfect symmetry is a mathematical
ideal--an ideal not fully realized by the stroke of any pen. Indeed, if just
d one molecule of ink is "misplaced" after a motion, an infinite number of points
;ﬁ‘ are not invariant. So when 1s there "enough" symmetry present to classify a

X given picture as having a certain symmetry type? The answer is subjective. 1In
many contexts, the following consideration is useful: did the artist who

hb created the design intend for the viewer to interpret it as having perfect

symmetry?
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Symmetry: D11
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As a final example, the 26 letters of the alphabet represent 5 different
symmetry types. One from each type is listed below. Can you classify the other

y 21 letters?
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::: Figure 2.8
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Chapter 3 i

Tz

s

FRIEZE GROUPS

A frieze 18 any decorative sgstrip or border that contains lettering, sculp-
ture, pictures, etc. (In classical architécture, the frieze 1s that part of the
entablature between the architrave and the cornice.) From our group symmetry
point of view we are interested in those two-dimensional designs located in a
frieze that repeat themselves at regular intervals, We assume these designs
continue infinitely in both directions along a straight line. The footsteps we

encountered in example 1.2 are a good example of a frieze pattern.

' ) '
t 1
Ltl i
D | (P P
T
] | '
I i E»
[ = |
' T
i
!
Figure 3.1

R

Like all frieze patterns, the symmetry group of the footprints is an infinite

k.l.’l.)'_ o £ 84,

symmetry group. However, note that the footprints do have a minimum translation

Ly

i

period, in this case t. The existence of a minimum translation perifod identifies
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an the pattern as having what 1s called a discrete symmetry group. This 1is not

always the situation, as when we consider the stripe pattern depicted below:

Figure 3.2

A stripe pattern has no minimum translation period and we say that its
symmetry group is continuous (this is really the same idea we encountered with
circles when dealing with bounded figures——there no minimum rotation existed).

‘b' We will assume for the rest of this paper that we are dealing with only discrete
symmetry groups.

The symmetry group of a frieze pattern is called a frieze group, and there
are exactly seven types of frieze groups [6]. This classification i{s based on
the fact that the only motions possible for a frieze pattern are:

- translations along a fixed line L

. 180° rotations about points on L
a horizontal mirror through L

vertical mirrors perpendicular to L
glides with respect to L

Every frieze group must have translations, but it is the ‘resence or absence of

the other motions that defines the éymmetry. The seven types of frieze groups
are depicted in the following illustrations taken from John R. Durbin's book [2],

"Modern Algebra: An Introduction."”
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translations
glides

vertical mirrors
- horizontal mirror
-~ rotations
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Doctors Bruce Rose and Robert Stafford have recently created a simple

S

algorithm to aid in classifying frieze patterns [8]. With slight modification,

the algorithm 1s as follows:

- . N -
..‘. .v:'-’&- . atet

Pl

- o
- 3
Fa

.-q
vl
[y

-22-

R

®
¥
“:‘

‘!

% W Y Y P
o i‘

' v Ay
o ".': ':: ':' 00O ' NN 'I'*l W 'c 't’ h‘ W 'l‘ 'u‘ KA o‘l"’l‘ 3 h" '0. n‘ Xh !':‘!'l K U SR SR ot )




- A e THEETITIE IR TIETI I TESTIF A NS E STV RWRENT N

-
-

S

L

[

n

.I

'i

n’ ]

¢ '

d no
f Translations? Not a Frieze Group
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.

o yes
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no no no

b 180° Rotations? Horizontal Mirror? Vertical Mirrors? Glides?
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; yes yes yes | no
- G
: yes

L
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: no no

. Horizontal Mirror? Glides? -——-—-ﬁ<::>
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yes yes
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Figure 3.4

\ Example 3.1
Classify the symmetry group HT for the graph of f(x) = sin x.
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While translations along the x-axis (minimum period of 2n) are obvious,
there are also 180° rotation points along the x—-axis at + nw, n an integer.
Using the algorithm in Figure 3.4 we would next ask if Hy, contains a hori-
zontal mirror through the x—axis. It doesn't, but we do observe that a trans-
lation of w units along the x-axis followed by a reflection through that axis
is a member of the symmetry group. Therefore, glides are elements of HT and
we conclude that the symmetry type is "trgv".

We conclude this chapter with seven illustrations taken from Owen Jones'
classic "The Grammar of Ornament,”" first published in 1856 [4]. As an
example of the impact color has on symmetry, notice that the coloring in the
"trhv" illustration doubles the minimum translation period. Polychromatic
Symmetry is a fascinating field and for those interested in learning about the
impact of color on symmetry one of the most enjoyable places to start is
Caroline MacGillavry's book [5], "Fantasy and Symmetry: The Periodic

Drawings of M. C. Escher".

Key to Figure 3.6:

t - Medieval Stained Glass - Cathedral of Bourges
tv - Medieval Stained Glass - Cathedral of Bourges
tr - Persian Manuscript - British Museum

trhv - Persian Manuscript - British Museum

th - Medieval Stained Glass - Cathedral of Bourges
tg - Persian Manuscript = British Museum

trgv - Greek Vase - Britsh Museum or the Louvre
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Chapter 4

WALLPAPER GROUPS

Wallpaper patterns are those patterns in the plane that repeat themselves

at regular intervals in two non-parallel directious.

Figure 4.1

The above pattern is a reduced copy of an actual wallpaper sample. Notice
that we have independent translations along the two lines L1 and L2. We assume
the wallpaper design repeats itself infinitely, filling the entire plane. We call
the symmetry group of a wallpaper pattern a wallpaper group. As with a frieze
group, a wallpaper group is an infinite symmetry group. The key to classifying
wallpaper groups was unlocked in the 1890's by the Russian crystallographer E. S.
Fedorov: there are only 17 types of wallpaper groups. We will not take up the
proof of Fedorov's assertion except to say that at the heart of the proof lies one
of the most elegant and useful tools found in any branch of mathematics, the
Crystallographic Restriction. The Crystallographic Restriction tells us that the

only nontrivial rotations possible in a wallpaper group are rotations of 60°, 90°,

2
)
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" ?:} 120°, and 180°. The best informal discussions that explain the Crystallographic
~ i \
Qo NG
?" Restriction and why there are 17 types of wallpaper groups are given by Durbin [2]
v
:$ and Schattschneider [9]. For those with a hearty background in mathematics, a full
XY
:ﬁ: group theory development is given by Schwarzenberger [11].
4.’ ]
fﬁ In theory, determining the symmetry type of a given wallpaper pattern should be
"
ﬁﬁ easy and straightforward. In reality however, the symmetry type can often be
)
lz; . devilishly obscure. Therein lies the challenge and fun. Fortunately, there are some
W
(” marvelous aids to help us analyze complex designs. Schattschneider has compiled a
LA -
f: useful table for classifying wallpaper patterns [9]. Virtually the same table has
»
:‘ been put into algorithm form by Drs Rose and Stafford [8] and is reproduced from
t; Durbin's book [2] in Figure 4.2.
"“l Transiations in two No Not 2 two — dimensionsl
:::. indeoencent directions? cryraiiographic group
‘." IY-
[}
;"l' Glide lines? o Mirror lines? J
r'. e Yes Yes
- e
0 e e ()
by S N i [re [ne ~
: 3 Yo Contar of roution Glide lines peraliei -Y—-@
wh Q ‘ of arder 67 micror lines?
. - =0
[ ¥\ INO
" Find highest order rotati Locate ractangie bounded
o o R e T
) 'V- I
:l 1 2 3 4 8
L) 3 .
e M—Fp::d:l‘ll mirror lines C«nw; ;::nmm groue
iy such that no miiror ling
K) pemes through the

i S

.'~ Comoute symmewy group

- of region bounded by

. these lines,

o

8., . G G|D,
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In Figure 4.2 the symbols used for the 17 types of wallpaper groups (also
called two-dimensional crystallographic groups) are those most commonly
accepted and come from a coding system designed by crystallographers. A full o

explanation of the symbols is given by Schattschneider [9].

Example 4.1 Classify the symmetry group HT for the following illustration

taken from Owen Jones' book [4], "The Grammar of Ornament."

Figure 4.3

This pattern is easy to analyze using the algorithm in Figure 4.2. First, note
that there are vertical mirror lices through the center of each leaf. By
observation, these are the only mirror lines for this pattern. Therefore,
non-parallel mirror lines do not exist. We next ask if there are horizontal
glide lines (perpendicular to the vertical mirror lines). The answer is no
since any horizontal reflection would have to change the "arches" from being
concave down to being concave up. This brings us to the final question: Are
there vertical glide lines? <Careful observation tells us that there are if we
shift the pattern vertically half a period and then reflect it through lines
like the one depicted in figure 4.4. Figure 4.5 traces the decision process we

have followed and we conclude that the pattern has symmetry "ca".
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We conclude this chapter with illustrations of the 17 types of wallpaper
groups. Three examples are given for each type. In every case the first example
is from a paper written by George Polya in 1924. 1In that papér, Polya included a
complete set of patterns depicting the 17 wallpaper groups. Historically, Polya's
examples are important im that they were studied and copied by Escher——knowledge
bl | Escher built upon to eventually create his most brilliant designs [10]. The
X second and third examples are from Durbin [2] and Schattschneider [9],

W ‘ respectively.
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Proof We use the following simple theorem found in every undergraduate modern

APPENDIX A

Let (G,°) be the group of all one-to-one, onto functions from R2 to R2 under
composition and let H be those functions in G that preserve distance, that is:
H={aeG: |p=-gq| =]alp) - «(q)]| for all p, q ¢ R2}

Then (H,o) is a subgroup of (G,e).

algebra text: A nonempty subset H of G is a subgroup of G if and only if for all aq,
B € H, the element a » B—l € H.

We start by noting that H is not empty since the identity map preserves
distance. Let « and B be any two elements in H, and let p and q be any two elements
in R,.

Notice that B € H implies 8-1 € H since

lp-al = [z 81 - (8e 87()] = 188 ) - 8(8”HD))| = |87 p) - 871(q)]

What we must show 1is a ° 8_1 e H, that is «o ° B-l preserves distance. It follows

immediately since a € H and B-ls H yields

[(a s 875 = Ca o 60| = |o(8p)) - a(8 ()]
- |8 ) - 87|
= |p - ql
Q.E.D

-47~



APPENDIX B

Let (H,o) be the group of all one-to-one, onto functions from R2 to RZ under
composition that also preserve distance. Let T E; RZ’ T # ¢, and define

Hp = {a e H: o(T) = T}. Then (HT’°) is a subgroup of (H,e).

Proof The identity map i is in HT since 1(T) = T. Let a, B be any two elements in

Hy. Notice that B eT implies 87! €T since T = B_I[B(T)) = 87HT). We need only
-1

T and 8 € HT yields

(ao £ = alFHT)) = T) = T.

show (a o B1) ¢ H.. It follows easily since a €H

Q. E. D.
o
e
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APPENDIX C

Nonzero translation; cannot be motions in the symmetry group HT of a bounded

figure.

Proof Since we are dealing with a bounded.figure, pick a ecircle with radius R such
that all of T lies inside the circle. We will assume there exists a € HT’ where a is
a nonzero translation with translation distance d > 0, and arrive at a contradiction.
Since (HT,O) is a group, it is closed under composition: in particular, {aF: k a
positive 1nteger} E;_HT. Note that 1f we apply ck to the plane we are translating
every point in the plane a distance k*d. For large enough k, say K, we are shifting
the entire plane a distance K*d > 2R, and points that start off inside the circle
must end up outside the circle. But this obviously means that invariance no longer

holds, that is « (T) # T. We conclude a ¢ HT' contradicting our previous statement.
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